[关键词]
[摘要]
目的 采用网络药理学及实验验证探讨健脾清热活血方 (JQHF) 治疗胃癌前病变 (PLGC) 的潜在作用机 制。方法 (1) 检索中药系统药理学数据库与分析平台 (TCMSP) 、Herb 数据库及相关文献筛选 JQHF 活性成分 及对应靶点;GeneCards、OMIM 数据库筛选 PLGC 相关的疾病靶点,并取二者的交集靶点获取 JQHF 治疗 PLGC 的潜在作用靶点。利用 STRING 数据库构建蛋白质相互作用 (PPI) 网络,Cytoscape 软件构建“疾病- 药物-活性成分-靶点”网络,筛选 JQHF 治疗 PLGC 的核心活性成分和核心潜在靶点。使用 Metascape 软件对 潜在作用靶点进行基因本体 (GO) 功能和京都基因与基因组百科全书 (KEGG) 通路富集分析,并通过分子对接验 证核心活性成分和核心潜在靶点结合活性。 (2) 采用 1-甲基-3-硝基-1-亚硝基胍 (MNNG) 诱导 GES-1 细胞构建 恶性转化细胞 (MC) 作为 PLGC 的体外细胞模型。利用 SD 大鼠制备 JQHF 空白血清和含药血清,并通过 CCK-8 法筛选 JQHF 含药血清干预浓度、时间。在此基础上,将处于对数生长期的 GES-1 细胞随机分为空白组 (20% 空白血清) 、模型组 (20% 空白血清) 、JQHF 低剂量组 (10% 空白血清+10%JQHF 含药血清) 、JQHF 高剂量组 (20%JQHF 含药血清) 。采用细胞克隆实验、划痕实验、Transwell 实验评估细胞的增殖、迁移、侵袭能力; qRT-PCR 法检测细胞中 E-钙黏蛋白 (E-cadherin) 、N-钙黏蛋白 (N-cadherin) 、波形蛋白 (Vimentin) 、尾型同源 框转录因子 2 (CDX2) 、性别决定区 Y 框蛋白 2 (SOX2) 、肿瘤蛋白 P53 (TP53) 、丝氨酸/苏氨酸蛋白激酶 1 (AKT1)、信号转导和转录激活因子 3 (STAT3)、肉瘤病毒蛋白(SRC)、热休克蛋白 90α 型 1 (HSP90AA1) mRNA 的表达水平;Western Blot 法检测细胞 E-cadherin、N-cadherin、Vimentin、CDX2、SOX2 蛋白表达水 平。结果 (1) 共获得 JQHF 活性成分 94个及对应靶点 747个;PLGC 疾病靶点 2 074个;二者交集靶点 329个。 JQHF 治疗 PLGC 的核心活性成分有槲皮素、12-千里光酰基-反式-白术三醇、芹菜素、木犀草素、熊果酸等, 核心潜在靶点有 TP53、AKT1、STAT3、SRC、HSP90AA1 等,其治疗作用机制主要涉及 PI3K-AKT、TNF、 IL-17 信号通路等。JQHF 治疗 PLGC 的核心活性成分 (槲皮素、12-千里光酰基-反式-白术三醇、芹菜素、木 犀草素、熊果酸) 与核心潜在靶点 (TP53、AKT1、STAT3、SRC、HSP90AA1) 具有较好结合活性。 (2) CCK-8 法 筛选出的药物干预低、高浓度分别为 10%JQHF 含药血清、20%JQHF 含药血清,干预时间为 48 h。与空白组 比较,模型组细胞的克隆细胞数、细胞迁移面积、迁移细胞数、侵袭细胞数显著增加 (P<0.01) ;与模型组比 较,JQHF 低、高剂量组细胞的克隆细胞数、迁移细胞面积、迁移细胞数、侵袭细胞数显著下降 (P<0.05, P<0.01) 。与空白组比较,模型组细胞 E-cadherin、SOX2、TP53 mRNA 及 E-cadherin、SOX2 蛋白表达水平显 著降低(P<0.01),N-cadherin、Vimentin、CDX2、AKT1、STAT3、SRC、HSP90AA1 mRNA 及 N-cadherin、 Vimentin、CDX2 蛋白表达水平升高 (P<0.01) 。与模型组比较,JQHF 低、高剂量组细胞的 TP53 、E-cadherin、 SOX2 mRNA 与 E-cadherin、SOX2 蛋白表达水平升高 (P<0.05,P<0.01) ,AKT1、STAT3、SRC、N-cadherin、 Vimentin、CDX2 mRNA 与 N-cadherin、Vimentin、CDX2 蛋白表达水平显著降低 (P<0.05,P<0.01) ,JQHF 高剂量组细胞 HSP90AA1 mRNA 表达水平降低 (P<0.05) ,JQHF 低剂量组 HSP90AA1 mRNA 表达水平有降低趋势,但差异无统计学意义 (P>0.05) 。结论 JQHF 治疗 PLGC 具有多成分、多靶点、多途径的特征,其核心 活性成分槲皮素、12-千里光酰基-反式-白术三醇、芹菜素、木犀草素、熊果酸可能通过调控核心靶点 TP53、 AKT1、STAT3、SRC、HSP90AA1,干预 PI3K-AKT、TNF、IL-17 信号通路,协同发挥治疗作用。细胞实验证 实 JQHF 含药血清可通过作用于 TP53、AKT1、STAT3、SRC、HSP90AA1 等靶点,逆转 MC 细胞恶性生物学行 为,延缓 PLGC 进程。
[Key word]
[Abstract]
Objective To investigate the potential mechanism of Jianpi Qingre Huoxue Formula (JQHF) in treating precancerous lesions of gastric cancer (PLGC) using network pharmacology and experimental validation. Methods (1) Active components of JQHF and their corresponding targets were screened through the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP),Herb database,and related literature. PLGC- related disease targets were identified from GeneCards and OMIM databases. The intersection targets between JQHF and PLGC were obtained to identify potential therapeutic targets. A protein-protein interaction (PPI) network was constructed using the STRING database,and a "disease-drug-active component-target" network was established using Cytoscape software to screen core active components and potential targets of JQHF for PLGC treatment. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed on potential targets using Metascape software, and molecular docking was used to validate the binding activity between core active components and potential targets. (2) A malignant transformation cell (MC) model of PLGC was established by inducing GES-1 cells with 1-methyl-3-nitro-1-nitrosoguanidine (MNNG) . Blank serum and drug-containing serum of JQHF were prepared from SD rats,and the optimal intervention concentration and time of JQHF drug-containing serum were determined using the CCK-8 assay. Subsequently,GES-1 cells in the logarithmic growth phase were randomly divided into a blank group (20% blank serum) ,model group (20% blank serum) ,JQHF low-dose group (10% blank serum + 10% JQHF drug-containing serum), and JQHF high-dose group (20% JQHF drug-containing serum) . Cell proliferation,migration,and invasion abilities were evaluated using colony formation,scratch,and Transwell assays. The mRNA expression levels of E-cadherin,N-cadherin,Vimentin,caudal-type homeobox transcription factor 2 (CDX2) ,sex-determining region Y-box protein 2 (SOX2) ,tumor protein P53 (TP53) ,serine/threonine-protein kinase 1 (AKT1),signal transducer and activator of transcription 3 (STAT3),sarcoma viral oncogene homolog (SRC) ,and heat shock protein 90 α family class A member 1 (HSP90AA1) were detected by qRT-PCR. The protein expression levels of E-cadherin, N-cadherin, Vimentin, CDX2, and SOX2 were measured by Western Blot. Results (1) A total of 94 active components of JQHF and 747 corresponding targets were identified,along with 2 074 PLGC-related disease targets. The intersection targets numbered 329. Core active components of JQHF for PLGC treatment included quercetin,12-senecioyl-2E,8E,10E-atractylentriol,apigenin,luteolin,and ursolic acid, while core potential targets included TP53,AKT1,STAT3,SRC,and HSP90AA1. The therapeutic mechanisms primarily involved the PI3K-AKT,TNF,and IL-17 signaling pathways. Molecular docking confirmed strong binding activity between core active components (quercetin,12-senecioyl-2E,8E,10E-atractylentriol,apigenin,luteolin, ursolic acid) and core potential targets (TP53, AKT1, STAT3, SRC, HSP90AA1) . (2) The CCK-8 assay determined the optimal intervention concentrations as 10% (low dose) and 20% (high dose) JQHF drug-containing serum,with an intervention time of 48 hours. Compared with the blank group,the model group exhibited significantly increased colony formation,migration area,migrated cell count,and invaded cell count (P<0.01) . In contrast,the JQHF low- and high-dose groups showed significant reductions in these parameters (P<0.05,P<0.01) . Compared with the blank group, the model group displayed significantly decreased mRNA and protein expression levels of E-cadherin,SOX2,and TP53 mRNA (P<0.01),while the mRNA and protein expression levels of N-cadherin, Vimentin, CDX2, and mRNA expression of AKT1, STAT3, SRC, and HSP90AA1were elevated (P<0.01) . Compared with the model group, the JQHF low- and high-dose groups exhibited increased mRNA and protein expression levels of E-cadherin,and SOX2 and mRNA expression of TP53 (P<0.05,P<0.01),while the mRNA expression levels of AKT1,STAT3,SRC,mRNA and protein of N-cadherin,Vimentin,and CDX2 were significantly reduced (P<0.05,P<0.01) . The high-dose JQHF group also showed decreased HSP90AA1 mRNA expression (P< 0.05) ,while the low-dose group exhibited a non-significant downward trend,with no statistically significant difference (P>0.05) . Conclusion JQHF treats PLGC through multiple components, targets, and pathways. Core active components such as quercetin,12-senecioyl-2E,8E,10E-atractylentriol,apigenin,luteolin,and ursolic acid may regulate core targets (TP53,AKT1,STAT3,SRC,HSP90AA1) and modulate the PI3K-AKT,TNF,and IL-17 signaling pathways to exert therapeutic effects. Cellular experiments confirmed that JQHF drug-containing serum can reverse malignant biological behaviors of MC cells and delay PLGC progression by targeting TP53,AKT1,STAT3, SRC,and HSP90AA1.
[中图分类号]
R285.5
[基金项目]
国家自然科学基金项目 (82474404) ;广东省自然科学基金面上项目 (2023A1515011019) 。