[关键词]
[摘要]
目的 采用网络药理学和分子对接技术探讨白术治疗非酒精性脂肪肝(NAFLD)的作用机制,并进行细 胞实验验证。方法 (1)利用中药系统药理学数据库与分析平台(TCMSP)、BATMAN-TCM 数据库及中医药百 科全书数据库(ETCM)筛选白术有效成分及药物作用靶点;采用 GeneCards、DisGeNET 数据库筛选与 NAFLD 相关的疾病靶点,并运用 Venny 图在线工具取白术有效成分靶点与疾病靶点的交集。使用 STRING 数据库获得 蛋白质-蛋白质互作(PPI)信息,并通过 CytoNCA 插件构建 PPI 网络,筛选出白术治疗 NAFLD 的核心靶点,并 利用 DAVID 数据库对交集靶点进行 GO 和 KEGG 富集分析。通过 Cytoscape 3.8.2 软件构建“活性成分-靶点” 网络关系图,采用 AutoDockTools 软件对关键活性成分与治疗靶点进行分子对接。(2)采用游离脂肪酸诱导 HepG2 细胞建立 NAFLD 细胞模型,将处于对数生长期的 HepG2 细胞分为空白组、模型组及白术低(50 µg·mL-1 白术提取物)、中(100 µg·mL-1白术提取物)、高(200 µg·mL-1白术提取物)剂量组。采用油红 O 染色法检测细 胞内脂质蓄积情况;荧光探针检测细胞内活性氧(ROS)水平;试剂盒检测细胞内甘油三酯(TG)、总胆固醇 (TC)、谷草转氨酶(AST)、谷丙转氨酶(ALT)水平以及氧化应激指标[谷胱甘肽(GSH)、超氧化物歧化酶(SOD)] 水平;Western Blot 法检测 HepG2 细胞中核因子 κB(NF-κB)及其磷酸化蛋白(p-NF-κB)、肿瘤坏死因子 α (TNF-α)、白细胞介素 6(IL-6)、白细胞介素 1β(IL-1β)、缺氧诱导因子 1α(HIF-1α)、过氧化物酶体增殖物 激活受体 α(PPARα)、核因子 E2 相关因子 2(Nrf2)、血红素加氧酶 1(HO-1)蛋白表达。结果 (1)网络药理学 分析得到白术活性成分对应靶点 146 个,NAFLD 靶点 3 074 个,白术与 NAFLD 交集靶点 57 个。白术治疗 NAFLD 的关键成分有白术内酯Ⅲ、茅苍术醇和 β-桉叶醇,核心靶点有 NR3C1、PPARα、IL-6、ESR1、 IL-1β、PTGS2、TNF 等,治疗机制涉及 TNF-α、NF-κB 及 HIF-1α 信号通路等。分子对接显示,白术关键成 分白术内酯Ⅲ、茅苍术醇和 β-桉叶醇与核心靶点之间的结合活性良好。(2)细胞实验结果显示,白术提取物能 显著减少 NAFLD 细胞模型中 HepG2 细胞的脂质蓄积与 ROS 的产生,降低 TC、TG、AST、ALT 水平及 p-NF-κB/ NF-κB、TNF-α、IL-6、IL-1β、HIF-1α 蛋白表达,升高 GSH、SOD 水平及 PPARα、Nrf2、HO-1 蛋白表达。 结论 白术可能是通过白术内酯Ⅲ、茅苍术醇、β-桉叶醇等活性成分作用于 NR3C1、PPARα、ESR1、PTGS2 等靶点,调控 TNF-α、NF-κB、HIF-1α 信号通路来减轻炎症和氧化应激反应,从而发挥治疗 NAFLD 的作用。
[Key word]
[Abstract]
Objective To investigate the mechanism of Atractylodis Macrocephalae Rhizoma in treating non-alcoholic fatty liver disease (NAFLD) using network pharmacology and molecular docking,and to validate the findings through cellular experiments. Methods (1) Active components of Atractylodis Macrocephalae Rhizoma and their potential targets were screened using the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP),BATMAN-TCM,and the Encyclopedia of Traditional Chinese Medicine (ETCM). Disease-related targets of NAFLD were identified using GeneCards and DisGeNET databases, and the intersection between the targets of Atractylodis Macrocephalae Rhizoma and NAFLD was obtained using the VENNY online tool. Protein-protein interaction (PPI) information was acquired from the STRING database,and the PPI network was constructed using the CytoNCA plugin to identify core targets of Atractylodes Macrocephalae Rhizoma for NAFLD treatment. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed on the intersection targets using the DAVID database. The "active ingredient-targets" network was constructed using Cytoscape 3.8.2 software, and molecular docking of key active components with therapeutic targets was performed using AutoDockTools software. (2) A NAFLD cell model was established by inducing HepG2 cells with free fatty acids. HepG2 cells in the logarithmic growth phase were divided into a blank group,a model group,and low- (50 µg·mL⁻¹ Atractylodis Macrocephalae Rhizoma extract),medium- (100 µg·mL⁻¹ Atractylodis Macrocephalae Rhizoma extract),and high-dose (200 µg· mL⁻¹ Atractylodis Macrocephalae Rhizoma extract) groups of Atractylodis Macrocephalae Rhizoma. Intracellular lipid accumulation was detected using Oil Red O staining; reactive oxygen species (ROS) levels were measured using fluorescent probes;levels of triglycerides (TG),total cholesterol (TC),aspartate aminotransferase (AST),alanine aminotransferase (ALT),and oxidative stress markers glutathione (GSH) and superoxide dismutase (SOD) were detected using assay kits;and protein expression of nuclear factor-κB (NF-κB),phosphorylated NF-κB (p-NF- κB), tumor necrosis factor- α (TNF- α), interleukin-6 (IL-6), interleukin-1β (IL-1β), hypoxia-inducible factor-1α (HIF-1α), peroxisome proliferator-activated receptor- α (PPARα), nuclear factor erythroid 2-related factor 2 (Nrf2),and heme oxygenase-1 (HO-1) in HepG2 cells was detected using Western Blot method. Results (1) Network pharmacology analysis identified 146 targets of Atractylodis Macrocephalae Rhizoma active components, 3 074 NAFLD-related targets,and 57 intersection targets. Key components of Atractylodis Macrocephalae Rhizoma for NAFLD treatment included atractylenolide Ⅲ,hinesol,and β-eudesmol,with core targets such as NR3C1,PPARα, IL-6,ESR1,IL-1β,PTGS2,and TNF. The therapeutic mechanisms involved the TNF- α,NF-κB and HIF-1α signaling pathways. Molecular docking showed good binding activity between key components (atractylenolide III, hinesol,and β-eudesmol) and core targets. (2) Cellular experiments demonstrated that Atractylodis Macrocephalae Rhizoma extract significantly reduced lipid accumulation and ROS production in HepG2 cells in the NAFLD model, decreased levels of TC,TG,AST,ALT,and protein expression of p-NF- κB/NF-κB,TNF-α,IL-6,IL-1β, and HIF-1α,and increased levels of GSH,SOD,and protein expression of PPARα,Nrf2,and HO-1. Conclusion Atractylodis Macrocephalae Rhizoma may exert its therapeutic effects on NAFLD through active components such as atractylenolide III,hinesol,and β-eudesmol,targeting NR3C1,PPARα,ESR1,and PTGS2,and regulating the TNF-α,NF-κB and HIF-1α signaling pathways to alleviate inflammation and oxidative stress.
[中图分类号]
R575.5
[基金项目]
国家自然科学基金项目(82174267,82004019);河南省中医药科学研究专项(2023ZYZD15,2024ZY1027)。